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Note 

The Core Spreading Vortex Method 
Approximates the Wrong Equation 

In the (nonrandom) vortex blob method, solutions to Euler’s equations for 
incompressible, inviscid fluid flow are approximated by the motion of finitely many 
cores of vorticity of fixed shape. Two variations of the inviscid algorithm have been 
proposed for the computation of solutions to the Navier-Stokes equations. These 
are Chorin’s random vortex method and what we shall call the core spreading 
method (see Leonard’s survey [4] for a discussion of both of these methods and a 
list of references), In Chorin’s method, vortex cores of fixed shape make random 
jumps for the simulation of diffusion. In the core spreading method, on the other 
hand, the cores of vorticity are Gaussian functions spreading in time as exact 
solutions of the heat equation, and randomness is eliminated. 

The purpose of this note is to point out that the core spreading algorithm is 
physically wrong and, indeed, converges to a system of equations different from the 
Navier-Stokes equations. In the core spreading algorithm, vorticity is correctly dif- 
fused, but incorrectly convected, even in the limit of infinitely many vortices. We 
restrict our attention to the simplest case, that is, 2-dimensional flow without boun- 
daries. We take the viscosity to have value one and denote by q the vorticity at time 
t = 0, which we assume to be smooth and of compact support. 

In the core spreading method (as in the inviscid vortex blob method) t 
trajectories x,(l) of a finite number of fluid particles are calculated by the inte- 
gration of a system of autonomous ordinary differential equations. In these 
differential equations, the velocities dx,/dt are computed from the vorticity 
distribution determined by the system of all the particles. Let 4;, denote the shape 
of each vortex core at time t, so that 4t(x) =4(x, t), where 4(x, t) is the solution 
of the heat equation with initial condition &,(x). Thus, #, = 6, * &, where 
G,(x) = (47rt))’ exp( - Ix12/4t) is the heat kernel, and where * is the convolution 
operator, so that G, * &(x) = j G,(x - x’) &,(x’) dx’. Th e vorticity distribution from 
which velocities at time t are calculated is assumed to have the form 

i(X> t) = c @Ax-x,(t)) Vi> 

where yi is typically either the total vorticity in a small region about cli = x,(O), or, 
when the initial positions ai are the nodes of a grid of mesh width h, ;r?, = ~(a,). h2; 
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the summation is over all the particles. Set K(x) = V x (-log)(x) = (-x2, x1)//x/ * 
and K* = K * 4,. The velocity field v whose curl V x v is [ is given by 

u(x, f) = K * ((x, t) = 2 &x - x,(t)) yli. 

The core spreading method consists of the system of equations 

dxi 
-& Ct)=C Rt(xi(t)Pxj(f)f yII. 

.i 

Set K, = K x G,, and consider the Lagrangian system of equations 

Observe that E, = K * 4, = K * G, * do = K, * &,. Thus, Eqs. (l)-(2) and (3)-(4) dif- 
fer from the inviscid vortex blob method (with core function &,) and the flow map 
formulation of Euler’s equations, respectively, only in the replacement of K by K,. 
In fact, if do is radially symmetric and sufficiently smooth, with sIwz $,, = 1, the cli are 
chosen to be the nodes of a grid of mesh width h, vi= ~(a,). h2, and do tends to the 
Dirac distribution while h goes to zero, then the proof of the convergence theorem 
of Beale and Majda [3] (or see [l]) can easily be adapted to the system (1 t(2) to 
show its convergence to (3)-(4). We now compare (3t(4) to the Navier-Stokes 
equations. 

Define 

Thus, Eq. (4) can be written in the form &/&(cc, t) = zZ(@a, t), t). Let i” denote the 
passive transport of q by ~8; then F(&cc, t), t) = Y](R), and so at/at + (ii.V) 5 = 0. 
The vorticity corresponding to the system (3)-(4) is the function 8 = V x ii. Since, 
by a change of variables in the integral (5), ii = K, * 5 = K * (G, * t), it follows that 
iZ=Vxii=G,r C$ 

Whereas the Navier-Stokes vorticity satisfies 
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the vorticity 8 satisfies 

~=~(“**C)=V”(G,*6)+(;,*~=PZ~-G,*(ri.V~). 

Taking second derivatives, we have 

while 

Since at time t = 0, 

ad aw aii au -=- 
at at and -=-, 

at at 

we have, setting uO(x) = U(X, 0) = K * q(x), 

a*63 -- 
at* 

a20 
at2 

at time t = 0. The right-hand side is in general nonzero, and so w and & are not the 
same functions. Observe, however, that in the radially symmetric ease, when core 
spreading happens to converge to the correct equations, both terms on the right- 
hand side are zero. 

It is interesting to compare the discussion given here with the results of [Z]. 
Beale and Majda show that a convergent approximation to the Navier-Stokes 
equations in free space is obtained by a splitting procedure in which, at each time 
step, Euler’s equations are solved exactly, and then the heat equation is solve 
exactly. In the core spreading method, the Euler part of the splitting is incorrectly 
solved, for the vorticity is convected, not by the local velocity field, but by an 
averaged velocity, as is clear from (6). Chorin’s random vortex method, on the 
other band, can be seen to be an approximation to the correct splitting procedure: 
at each time step, Euler’s equations are solved and then the heat equation is 
approximated by particle diffusion. In fact, Marchioro and Pulvirenti [5] have 
shown that solutions of the stochastic differential equation, which is the con- 
tinuous-time version of the random vortex method, converge to solutions of the 
Navier-Stokes equations. 
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